Table of Contents

Preface	i
Chapter 1: Getting Started with Python Machine Learning	7
Machinę learning and Python - a dream team	8
What the book will teach you - and what it will not	9
How to best read this book	10
What to do when you are stuck	12
Getting started	12
Introduction to NumPy, SciPy, Matplotlib, and TensorFlow	13
Installing Python Chowing data officiantly with NumPy and intalligently with SciPy	13
Learning NumPy	14
	17
Handling nonexistent values	17
Comparing the runtime	18
Learning SciPy	19
Fundamentals of machinę learning	20
Asking a question	21
Getting answers	21
Our first (tiny) application of machine learning	21
Reading in the data Preprocessing and cleaning the data	22
Choosing the right model and learning algorithm	22
Before we build our first model	26
Starting with a simple straight line	26
Toward more complex models	28
Stepping back to go forward - another look at our data	31
Training and testing	34
Answering our initial question	36
Summary	38
Chapter 2: Classifying with Real-World Examples	39
The Iris dataset	40
Visualization is a good first step	40
Classifying with scikit-learn	42
Building our first classification model	42
Evaluation - holding out data and cross-validation	43
How to measure and compare classifiers	47
A more complex dataset and the nearest-neighbor classifier	48
Learning about the seeds dataset	48
Features and feature engineering	49
Nearest neighbor classification	50
Looking at the decision boundaries	51

Which classifier to use	54
Summary	55
Chapter 3: Regression	57
Predicting house prices with regression	57
Multidimensional regression	61
Cross-validation for regression	62
Penalized or regularized regression	63
L1 and L2 penalties	64
Using Lasso or ElasticNet in scikit-learn	66
Visualizing the Lasso path	66
P-greater-than-N scenarios	67
An example based on text documents	68
Setting hyperparameters in a principled way	70
Regression with TensorFlow	74
Summary	79
Chapter 4: Classification I - Detecting Poor Answers	81
Sketching our roadmap	82
Learning to classify classy answers	82
Tuning the instance	82
Tuning the classifier	82
Fetching the data	83
Slimming the data down to chewable chunks	84
Preselecting and processing attributes	84
Defining what a good answer is	86
Creating our first classifier	87
Engineering the features	87
Training the classifier	89
Measuring the classifier's performance	89
Designing more features	90
Deciding nowto improve the performance	g4
Bias, variance and their trade-off	g5
Fixing high bias	g5
Fixing high variance	g5
High of low blas?	g6
A bit of moth with a small avample	gg
A bit of math with a small example	gg
Applying logistic regression to our post-classification problem	104
Slimming the classifier	104
Shin itl	107
Classification using Tensorflow	108
Summary	109
Canina y	115

Chapter 5: Dimensionality Reduction	117
Sketching our roadmap	117
Selecting features	118
Detecting redundant features using filters	110
Correlation	122
Induation	122
Asking the model about the features using wrappers	130
Other feature selection methods	130
Feature projection	131
Sketching PCA	131
Applying PCA	132
Limitations of PCA and how LDA can help	131
Multidimensional scaling	135
Autoencoders, or neural networks for dimensionality reduction	138
Summary	144
Chapter 6: Clustering - Finding Related Posts	145
Measuring the relatedness of posts	146
How not to do it	146
How to do it	147
Preprocessing - similarity measured as a similar number of	117
common words	147
Converting raw text into a bag of words	149
Counting words	152
Normalizing word count vectors	153
Removing less important words	152
Sternining Installing and using NLTK	154
Extending the vectorizer with NI TK's stemmer	156
Stop words on steroids	159
Our achievements and goals	159
Clustering	159
K-means	163
Getting test data to evaluate our ideas	165
Clustering posts	165
Solving our initial challenge	168
Another look at noise	169
Tweaking the parameters	170
Summary	171
Chapter 7: Recommendations	172
Rating predictions and recommendations	173
Splitting into training and testing	169
Normalizing the training data	176
A neighborhood approach to recommendations	

A regression approach to recommendations	180
Backet analysis	102
	1 04
Applyzing supermarket chapping backets	100
	100
Association rule mining More advanced basket analysis	190
Summary	192
Chapter 8: Artificial Neural Networks and Deep Learning	195
Using TensorFlow	195
TensorFlow API	196
Graphs	197
Sessions	198
Useful operations	195
Saving and restoring neural networks	201
I raining neural networks	203
Convolutional neural networks	204
Recurrent neural networks	214
LSTM for image Processing	214
Summary	219
Sammary	221
Chapter 9: Classification II - Sentiment Analysis	223
Sketching our roadmap	223
Fetching the Twitter data	224
Introducing the Nai've Bayes classifier	224
Getting to know the Bayes theorem	225
Being nai've	224
Using Nalve Bayes to classify	227
Accounting for unseen words and other oddities	230
Croating our first classifier and tuning it	230
Solving an easy problem first	233
Lising all classes	233
Tuning the classifier narameters	237
Cieaning tweets	239
Taking the word types into account	244
Determining the word types	240
Successfully cheating using SentiWordNet	240
Our first estimator	250
Putting everything together	253
Summary	254
Chapter 10: Topie Modeling	255

Latent Dirichlet allocation	256
Building a topie model	256
Comparing documents by topie	262
Modeling the whole of Wikipedia	265
Choosing the number of topics	268
Summary	270
Chapter 11: Classification III - Musie Genre Classification	271
Sketching our roadmap	271
Fetching the musie data	272
Converting into WAV format	273
Looking at musie	276
Decomposing musie into sine-wave components	278
Using FFT to build our first classifier	278
Increasing experimentation agility	278
Training the classifier	281
Using a confusion matrix to measure accuracy in multiclass problems	201
An alternative way to measure classifier performance using receiver-	284
operator characteristics	
Improving classification performance with mel frequency cepstral	286
coefficients	291
Musie classification using Tensorflow	298
Summary	301
Chapter 12: Computer Vision	301
Introducing image processing	302
Loading and displaying images	305
Thresholding	305
Gaussian blurring	308
Putting the center in focus	310
Basic image classification	311
Computing features from images	310
Writing your own features	314
Using features to find similar images	316
Classifying a harder dataset	318
Local feature representations	321
Image generation with adversarial networks	330
Summary	221
Chantor 13: Poinforcomont Loarning	331
Types of roinforcement learning	332
Policy and value potwork	331
$\Omega_{-network}$	333
	333
A small example	

Using Tensorflow for the text game Playing breakout **Summary**

Chapter 14: Bigger Data Learning about big data

Using jug to break up your pipeline into tasks An introduction to tasks in jug Looking under the hood Using jug for data analysis Reusing partial results Using Amazon Web Services Creating your first virtual machines Installing Python packages on Amazon Linux Running jug on our cloud machinę Automating the generation of clusters with cfncluster Summary

Appendix A: Where to Learn More About Machine Learning Online courses

Books Blogs Data sources Getting competitive Ali that was left out Summary

Other Books You May Enjoy

Index